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Abstract In this project we evaluate second virial coefficient of some inert gases
via classical cluster expansion, assuming each atomic pair interaction is of Lennard-
Jones type. We also try to numerically evaluate the third virial coefficient of Argon gas
based on bipolar-coordinate integration (Mas et al. in J Chem Phys 10:6694, 1999),
assuming the same Lennard-Jones potential as before. The second virial coefficient
(Vega et al. in Phys Chem Chem Phys 4:3000–3007, 2002) calculated from our model
are compatible to the experimental data [19] The temperature at which B2(T ) → 0 is
called the Boyle’s temperature TB (Vega et al. in Phys Chem Chem Phys 4:3000–3007,
2002) for the Lennard-Jines (12-6) potential. For the second virial coefficient of He,
we obtain the Boyle’s temperature as follow: TB = 34.9312438964844 (K) B2(T ) =
9.82958 × 10−6 (cm3/mol).

Keywords The second virial coefficient · The third virial coefficient ·
Cluster expansion · Inert gases

1 Introduction

In this work, we have considered the (classical) ideal gases of noninteracting particles
for which the equation of state is given by PV = NkB T . This is valid when the gas is
very rarefied and particles are far apart from one another, so that the effect of interac-
tion is negligible. For real systems, deviations from the ideal gas law were observed
experimentally and interpreted by taking the interaction between the particles of the
system into consideration.

A. Hutem (B) · S. Boonchui
Forum for Theoretical and Computational Physics, Department of Physics, Faculty of Science,
Kasetsart University, Bangkok 10900, Thailand
e-mail: magoohootem@yahoo.com

123



J Math Chem (2012) 50:1262–1276 1263

Many attempts were made to obtain an empirical equation of state which would
give good agreement with the experimental results.

One important relation is the virial equation of state, which is generally expressed as

P

kB T
= N

V

(
1 + B2(T )

N

V
+ B3(T )

N 2

V 2 + B4(T )
N 3

V 3 + · · ·
)
, (1)

where P, T, kB and V is pressure, temperature, Boltzmann constant, molar volume,
and N is equal to NA the Avagadro constant, and B2(T ) and B3(T ) is the second,
third, and fourth… virial coefficients, respectively.

Deviations from the ideal state were first interpreted qualitatively by van der waals
[1] in terms of intermolecular interaction, which led to the famous equation of state.
However, the quantitative interpretation can be given in terms of the virial coefficients,
which can be expressed in terms of intermolecular interaction. At low densities, the
deviation from the ideal state are adequately explained by the second virial coefficient,
but at higher densities, higher virial coefficients must be taken into account.

Edalat et al. [2] used the second virial coefficient to evaluate the Lennard-Jones
potential parameter (ε∗, σ ) and the Mie(n,m) potential. Stigter et al. presented that
the second and third coefficients for these interaction can be explained by: (a) steric
repulsions among the PC head groups, and (b) a tilting of the P–N+ dipole of PC
so that the N+ end enter the oil phase [4]. For calculation of the classical second
and third virial coefficient of helium, argon at temperatures 113.15–1,223.15 K, see
Mass et al. [5], Vega et al. [6], Putintsev and Ptintesv [7], Christof and Bernd [8]. The
evaluation of the virial coefficient can be obtained from the experiment. However, the
study chose to the theory and calculate the virial coefficient of the inert gases. Due to
the inert gas with properties similar to real gases.

The scheme of the paper is as follows. In Sect. 2 detailing with the classical fluids
with spherical symmetric molecules and the calculation of B2(T ) and B3(T ) are given.
In Sect. 3, results for B2(T ) and B3(T ) for inert gases. The conclusion and discussion
is given in Sect. 4.

2 Basic theory

In this work, we obtain the expansion of the equation of state in the form [9–11]

β P =
∞∑

�=1

B�ρ
�, (2)

which is known as the virial expansion of the equation of state and P, ρ, B� and β is
call the pressure, the number density (ρ = N/V ), the �th virial coefficient and irre-
ducible cluster integral [12] respectively. Equation (2) can be obtained by eliminating
the fugacity (z) [12] between

β P = lim
V →∞

ln G

V
=

∑
�≥1

b�z�, (3)
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and

ρ = z

V

(∂ln G

∂z

)
T,V

=
∑
�≥1

� b�z� (4)

where G is the grand partition function. Equation (4) can be rewritten as

z = ρ

(
1 +

∑
�=2

�b�z�−1

)−1

. (5)

Taking help of Eq. (5), it can be expanded in the form

z = ρ
{

1 − β1z −
(1

2
β2

1 + β2

)
z2 −

(2

3
β3

1 + 2β1β2 + β3

)
z3 − · · ·

}
. (6)

This can be solved by the method of iteration. Thus,

z = ρ
{

1 − β1ρ +
(1

2
β2

1 − β2

)
ρ2 −

(1

6
β3

1 − β1β2 + β3

)
ρ3 + · · ·

}
, (7)

or in general

z = ρ exp

(
−

∞∑
�=1

β�ρ
�

)
(8)

where the β� are the irreducible cluster integral equation (8) expresses the fugacity as
a function of the density ρ. Next we eliminate z from Eq. (3).

Substituting Eqs. (5) and (8) into Eq. (3), we have

β P =
(
ρ − 1

2
β1ρ

2 − 2

3
β2ρ

3 − · · ·
)
. (9)

This can also be obtained in an easy way, starting from the probability that an
open system contains N molecules (PN = zN Z N /N !G). We can now express the
configurational integral Z N (Z N = N !∏N

�=1
(V b�)

m�

m�! , where we consider a system of
N particles. Let it consist of a number of clusters which represent m1 unit clusters,
m2 clusters of two molecules…, m� clusters of � molecules) in terms of the cluster
integral b�

β P = ln G

V
. (10)

Differentiating Eq. (10) with respect to z, we obtain

β
d P

dz
= 1

V G

d P

dz
= 1

V G

d

dz

( ∞∑
N=0

zN Z N

N !
)

= 1

V G

∞∑
N=0

( N zN−1

N ! Z N

)
. (11)
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Equation (11) can be rewritten as

β
d P

dz
= 〈N 〉

V z
= ρ

z
, (12)

where

〈N 〉 = G−1
∞∑

N=0

( N zN−1

N ! Z N

)
.

Then,

β
d P

dρ
= ρ

z

dz

dρ
= ρ

d(ln z)

dρ

or

β P =
ρ∫

0

ρ́
d(ln z)

dρ́
dρ́. (13)

Substituting Eq. (8) into Eq. (13) and using expand Taylor series, we get

β P = ρ −
∞∑

�=1

( �

� + 1

)
β�ρ

�+1. (14)

Comparing Eqs. (2) and (14), the virial coefficients are defined as

∞∑
�=1

B�ρ
� = ρ −

∞∑
�=1

( �

� + 1

)
β�ρ

�+1,

B1 = 1,

B� = −
(� − 1

�

)
β�−1 ; � ≥ 2. (15)

From Eq. (15), the second virial coefficients are [13]

B2(T ) = 2π NA10−24

∞∫

0

r2
(

1 − exp

(
−U (r)

kT

))
dr. (16)

From Eq. (15),the third virial coefficients are [14]

B3 = −2

3
β2 = −1

3

∫
f12 f13 f23dr3dr2. (17)
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Fig. 1 Bipolar coordinates for
three particles [4]
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r13 r23

r12

x

y
dy

dx

we introduce the Mayer function fi j defined by the relationship fi j = 1−exp(−U (ri j )

kl )

[13], where U (ri j ) is the pair potential between molecules i and j . In terms of Mayer
f-function [3,12], we form a cluster which is a collection of points (molecules) con-
nected directly or indirectly by the f-function. For example, a cluster of three par-
ticles,1,2,3, may be formed in any of the four ways (see Fig. 1). Equation (15) has
been confirmed that the contribution of higher order virial coefficients increases with
density ρ. At liquid density, one has to consider several terms of the series. However,
the expansion diverges at high density. Hence, this expansion approach to the equation
of state is suitable at low density where the series converges.

In order to evaluate Eq. (17), we introduce bipolar coordinates (see Fig. 1); we
fix the positions of the particles 1 and 2 and let particle 3 take all possible position.
Rotation of the element of area dxdy about the x axis sweeps out dr3, so that

dr3 = 2π ydxdy. (18)

The coordinates x and y can be transformed to r13 and r23 by relation

r2
13 = x2 + y2,

r2
23 = y2 + (r12 − x)2 (19)

and

r23 =
√

r2
13 + r2

12 − 2 r12r13 cos (φ). (20)

Using the Jacobian transformation [15], we get

dxdy = r13r23

yr2
dr13dr23

dr3 = 2πr13r23

r12
dr13dr23 (21)

Substituting Eq. (21) into Eq. (17), we obtain

B3(T ) = 2π

3

∫
a12 f12 dr12 (22)
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where

a12 = 1

r12

∫ ∫
r13 r23 f13 f23 dr23dr13. (23)

Differentiating Eq. (20) with respect to φ ∈ [0, π ], we obtain

2 r23

(dr23

dφ

)
= 2 r13 r12 sin(φ)

dr23 =
(r13 r12

r23

)
sin(φ) dφ. (24)

Substituting Eq. (24) into Eq. (23), we have

a12 = 1

r12

∫

allr13

r13 f (r13) dr13

( ∫

allr12

r23
r13r12

r23
sin(φ) f (r23)dφ

)
dr13

a12 =
∫

allr13

r2
13 f (r13)

1∫

−1

f

(√
r2

13 + r2
12 − 2r13r12 cos(φ)

)
d cos(φ)dr13 (25)

Inserting Eq. (25), η = cos(φ) and the Lennard-Jones (12-6) potential [13] into
Eq. (22), we finally obtain the third virial coefficient

B3(T ) = 8π2

3
(NA)210−48

∞∫

0

r2
12 f (r12)

∞∫

0

r2
13 f (r13)

×
1∫

−1

f (

√
r2

12 + r2
13 − 2r12r13η) dηdr12dr13. (26)

The special potential given by Lennard-Jones potential with n = 12, m = 6 [13] has
been used in calculate B2(T ) and B3(T ) in Mathematica program [16,17].

3 Calculations and result

To again a feeling for the temperature dependence of B2(T ), B3(T ) and its dependence
on the form of the interaction, let us look at a particular interaction potential:

U (r) = 4ε∗[(σ

r

)12 −
(σ

r

)6]
, (27)

which is known as a generalized Lennard-Jones potential. This potential has a mini-

mum value of −ε∗ at r = 2
1
6 σ . For inert gases, appropriate values of ε∗ and σ show

in Table 1 (see Table 1).
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Table 1 Lennard-Jones
potential parameter [2,7,18] Gases (ε∗/kB ) (K) σ (Å)

He 10.22 2.56

Ne 35.6 2.75

Ar 120 3.40

Kr 171 3.60

Xe 220 4.10

N2 95.5 3.74

CH4 148.4 3.81

CF4 151.4 4.75

Table 2 The second virial coefficient calculation

T (K) He Ne Ar Kr Xe N2 CH4 CF4

293.15 11.16 11.03 −16.90 −53.34 −131.41 −6.14 −45.25 −92.09

400.00 10.99 12.57 −1.02 −23.35 −68.94 9.54 −15.75 −33.48

500.00 10.78 13.24 7.02 −8.25 −37.88 17.45 −0.82 −3.85

600.00 10.57 13.59 12.06 1.23 −18.47 22.36 8.55 14.76

700.00 10.37 13.76 15.46 7.68 −5.29 25.63 14.91 27.39

800.00 10.18 13.84 17.86 12.29 4.19 27.92 19.46 36.43

900.00 10.01 13.86 19.64 15.75 11.30 29.58 22.84 43.15

1,000.00 9.85 13.84 20.98 18.40 16.79 30.82 25.42 48.29

1,200.00 9.57 13.75 22.84 22.17 24.66 32.46 29.06 55.55

1,400.00 9.32 13.62 24.01 24.66 29.94 33.45 31.44 60.29

1,600.00 9.10 13.47 24.79 26.38 33.68 34.05 33.05 63.53

1,800.00 8.91 13.31 25.30 27.62 36.41 34.41 34.19 65.81

2,000.00 8.74 13.16 25.65 28.53 38.47 34.62 35.00 67.45

2,400.00 8.44 12.88 26.04 29.71 41.28 34.75 36.03 69.53

3.1 Logic of the second virial coefficient

By substituting Eq. (27) into Eq. (16), we finally obtain the second virial coefficient
as

B2(T ) = 2π NA10−24

∞∫

0

r2
(

1 − exp
(

− 4ε∗

kB T

[(σ

r

)12 −
(σ

r

)6]))
dr, (28)

where NA = 6.02 × 1023. We obtain the numerical values the second viri-
al coefficient for inert gases as displayed in table (see Tables 2–9). In Figs. 2
and 3 the second virial coefficient for He, Ne, Ar, Kr, Xe, N2, CH4, CF4 are
presented.
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Table 3 Comparison of the
second virial coefficient obtain
cluster expansion theory and
experimental for He

T (K) Experiment [19] Calculation % difference

293.15 11.15 11.16 0.09

400.00 10.94 10.99 0.46

500.00 10.72 10.78 0.56

600.00 10.51 10.57 0.57

700.00 10.32 10.37 0.48

800.00 10.13 10.18 0.49

900.00 9.97 10.01 0.40

1,000.00 9.81 9.85 0.40

1,200.00 9.58 9.57 0.10

1,400.00 9.37 9.32 0.53

1,600.00 9.15 9.10 0.54

1,800.00 8.93 8.91 0.22

2,000.00 8.72 8.74 0.23

2,400.00 8.44 8.44 0.00

Table 4 Comparison of the
second virial coefficient obtain
cluster expansion theory and
experimental for Ne

T (K) Experiment [19] Calculation % difference

293.15 11.02 11.03 0.09

400.00 12.47 12.57 0.08

500.00 13.19 13.24 0.37

600.00 13.62 13.59 0.22

700.00 13.77 13.76 0.07

800.00 13.87 13.84 0.22

900.00 13.91 13.86 0.36

1,000.00 13.88 13.84 0.29

1,200.00 13.75 13.75 0.00

1,400.00 13.61 13.62 0.07

1,600.00 13.46 13.47 0.07

1,800.00 13.31 13.31 0.00

2,000.00 13.16 13.16 0.00

2,400.00 12.87 12.88 0.08

Logic of the second virial coefficient

– Input values (ε∗/kB), σ (Å) and temperature in Mathematica programm.
– Input Eq. (28) into Mathematica programm.
– Calculate B2(T )

For example, numerical evaluation of second virial coefficient for He

– ε∗ = 10.22; σ = 2.56; T = 2, 400;
– NIntegrate

[
2π NA10−24r2

(
1 − exp

(
− 410.22

kB 2,400

[(
2.56

r

)12 −
(

2.56
r

)6]))]

– B2(T ) = 8.43987
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Table 5 Comparison of the
second virial coefficient obtain
cluster expansion theory and
experimental for Ar

T (K) Experiment [19] Calculation % difference

293.15 −16.85 −16.90 0.29

400.00 −0.82 −1.02 24.29

500.00 7.17 7.02 2.09

600.00 12.25 12.06 1.55

700.00 15.67 15.46 1.34

800.00 18.09 17.86 1.27

900.00 19.84 19.64 1.01

1,000.00 21.19 20.98 0.99

1,200.00 23.01 22.84 0.74

1,400.00 24.03 24.01 0.08

1,600.00 24.86 24.79 0.28

1,800.00 25.49 25.30 0.74

2,000.00 25.91 25.65 1.00

2,400.00 26.24 26.04 0.76

Table 6 Comparison of the
second virial coefficient obtain
cluster expansion theory and
experimental for Kr

T (K) Experiment [19] Calculation % difference

293.15 −53.79 −53.34 0.08

400.00 −22.88 −23.35 2.05

500.00 −7.25 −8.25 13.79

600.00 2.56 1.23 52.57

700.00 9.23 7.68 16.79

800.00 14.01 12.29 12.28

900.00 17.60 15.75 10.51

1,000.00 20.32 18.40 9.44

1,200.00 24.20 22.17 8.38

1,400.00 26.76 24.66 7.85

1,600.00 28.53 26.38 7.53

1,800.00 29.65 27.62 6.84

2,000.00 30.49 28.53 6.43

2,400.00 31.84 29.71 6.69

3.2 Logic of the third virial coefficient

By substituting Eq. (27) into Eq. (26), we finally obtain the third virial coefficient as

B3(T )= 8π2

3
N 2

A10−48

150∫

0

150∫

0

150∫

0

r2
12

(
1−exp

(
−U (r12)

kB T

))
r2

13

(
1−exp

(
−U (r13)

kB T

))

×
⎛
⎝1 − exp

⎛
⎝−

U (

√
r2

12 + r2
13 − 2r12r13η)

kB T

⎞
⎠

⎞
⎠ dr13dr12dη, (29)
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Table 7 Comparison of the
second virial coefficient obtain
cluster expansion theory and
experimental for Xe

T (K) Experiment [19] Calculation % difference

293.15 −131.41 −134.59 2.42

400.00 −68.94 −70.79 2.68

500.00 −37.88 −39.83 5.15

600.00 −18.47 −20.40 10.45

700.00 −5.29 −6.92 16.89

800.00 4.19 2.55 39.14

900.00 11.30 9.67 14.42

1,000.00 16.79 15.29 8.93

1,200.00 24.66 23.25 5.72

1,400.00 29.94 28.53 4.71

1,600.00 33.68 32.32 4.04

1,800.00 36.41 35.10 3.59

2,000.00 38.47 37.19 3.33

2,400.00 41.28 39.91 3.32

Table 8 Comparison of the
second virial coefficient obtain
cluster expansion theory and
experimental for N2

T (K) Experiment [19] Calculation % difference

293.15 −4.96 −6.14 21.21

400.00 9.48 9.54 0.62

500.00 16.65 17.45 4.62

600.00 21.14 22.36 5.63

700.00 24.19 25.63 5.78

800.00 26.41 27.92 5.58

900.00 28.08 29.58 5.20

1,000.00 29.39 30.82 4.72

1,200.00 31.31 32.47 3.62

1,400.00 32.64 33.45 2.45

1,600.00 33.62 34.05 1.28

1,800.00 34.37 34.41 0.13

2,000.00 34.96 34.63 0.99

2,400.00 35.84 34.75 3.09

where

U (r12) = 4ε∗
((

σ

r12

)12

−
(

σ

r12

)6
)

,

U (r13) = 4ε∗
((

σ

r13

)12

−
(

σ

r13

)6
)

,
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Table 9 Comparison of the
second virial coefficient obtain
cluster expansion theory and
experimental for CH4

T (K) Experiment [19] Calculation % difference

293.15 −44.95 −45.25 0.67

400.00 −15.09 −15.75 4.26

500.00 0.39 −0.82 71.96

600.00 10.43 8.55 19.82

700.00 17.51 14.91 16.02

800.00 22.77 19.46 15.67

900.00 26.83 22.84 16.08

1,000.00 30.07 25.42 16.75

1,200.00 34.92 29.06 18.29

1,400.00 38.37 31.44 19.86

1,600.00 40.95 33.05 21.34

1,800.00 42.96 34.19 22.72

2,000.00 44.56 35.00 24.03

2,400.00 46.97 36.02 26.04

U (

√
r2

12 + r2
13 − 2r12r13η) = 4ε∗

⎛
⎜⎝

⎛
⎝ σ√

r2
12 + r2

13 − 2r12r13η

⎞
⎠

12

−
⎛
⎝ σ√

r2
12 + r2

13 − 2r12r13η

⎞
⎠

6
⎞
⎟⎠ . (30)

We obtain the numerical values the third virial coefficient for inert gases as dis-
played in table (see Table 10). In Figs. 4 and 5 the third virial coefficient for He, Ne,
Ar, Kr, Xe, N2, CH4, CF4 are presented.

Logic of the third virial coefficient

– Input r12 = 0.01, r13 = 0.01	r12 = 0.01	r13 = 0.01 in Mathematica program.
– Input The Lennard-Jones potential in Mathematica programm.
– Input ε∗, σ into the Lennard-Jones potential in Mathematica program.
– Input f-function in Mathematica program.
– We used command. The While loop continues until the condition fails.

For example, numerical evaluation of third virial coefficient for N2

– I n[1] := r13 = 0.01; sum1 := 0.0;
– I n[2] := 	r12 = 0.01; 	r13 = 0.01; 	η = 0.1;
– I n[3] := u[a_] :=

(
4×95.48

2,400

)((
3.736

a

)12 −
(

3.736
a

)6);
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Fig. 2 The second virial coefficient of He, Ne, Ar, Kr as from experiment (symbols) [19] and from the
calculations of this work for He, Ne, Ar [6], Kr (solid line). The parameter (ε∗, σ ) used to describe He, Ne,
Ar, Kr in Table 1. a He, b Ne, c Ar, d Kr
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Fig. 3 The second virial coefficient of Xe, N2, CH4, CF4 as from experiment (symbols) [19] and from the
calculations of this work for Xe, N2, CH4, CF4 (solid line). The parameter (ε∗, σ ) used to describe Xe, N2,
CH4, CF4 in Table 1. a Xe, bN2 , c CH4, d CF4

123



1274 J Math Chem (2012) 50:1262–1276

Table 10 The third virial coefficient calculation

T (K) He Ne Ar Kr Xe N2 CH4 CF4

293.15 0.001111 0.013480 0.024080 0.035466 0.0245912 0.0245905 0.0245912 0.0245912

400.00 0.000756 0.011610 0.023955 0.028213 0.0245912 0.0245857 0.0245912 0.0245912

500.00 0.000572 0.010010 0.024643 0.027158 0.0245912 0.0245735 0.0245912 0.0245912

600.00 0.000454 0.008660 0.025314 0.027317 0.0245912 0.0245517 0.0245906 0.0245912

700.00 0.000373 0.007550 0.025827 0.027748 0.0245912 0.0245199 0.0245893 0.0245912

800.00 0.000315 0.006635 0.026224 0.028213 0.0245912 0.0244791 0.0245868 0.0245912

900.00 0.000271 0.005874 0.026515 0.028645 0.0245912 0.0244305 0.0245826 0.0245912

1,000.00 0.000237 0.005230 0.026723 0.028997 0.0245912 0.0243753 0.0245763 0.0245912

1,200.00 0.000187 0.004257 0.026984 0.029556 0.0245912 0.0242502 0.0245570 0.0245912

1,400.00 0.000154 0.003547 0.027119 0.029923 0.0245912 0.0241121 0.0245283 0.0245912

1,600.00 0.000129 0.003016 0.027138 0.030165 0.0245912 0.0239667 0.0244908 0.0245912

1,800.00 0.021150 0.030315 0.002596 0.030317 0.0245910 0.0238183 0.0244454 0.0245912

2,000.00 0.027060 0.030410 0.002275 0.030418 0.0245909 0.0236687 0.0243934 0.0245912

2,400.00 0.026890 0.030455 0.001798 0.030456 0.0245907 0.0233741 0.0242743 0.0245912
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Fig. 4 Third virial coefficient of He, Ne, Ar, Kr as obtained from the calculations are presented solid line.
a He, b Ne, c Ar, d Kr

– I n[4] := f [b_, c_, ξ_] := 8π3

3 (6.022)20.01(150 b)2(150 c)2(1 − e−U [150 b])
(1 − e−U [150 c])
(1 − exp(−U [√(150 b)2 + (150 c)2 − 2 (150 b) (150 c) ξ ]));

– I n[5] := W hile[r13 < 1.01; r13 = r13 + 	r13; r12 = 0.01;
W hile[r12 < 1.01; r12 = r12 + 	r12; η = −1.0;
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Fig. 5 Third virial coefficient of Xe, N2, CH4, CF4 as obtained from the calculations are presented solid
line. a Xe, b N2, c CH4, d CF4

W hile[η < 1, η = η+	η; sum1 = sum1 + 	r12 	r13 	η

f
[(

r13 − 	r13
2

)
,

(
r12 − 	r12

2

)
,

(
η − 	η

2

)]

– I n[6] := Print[sum1]
– out[6] := 0.0233741

4 Conclusion

The second virial coefficients is compared with experimental values of Inert gases
(see Tables 3, 4, 5, 6, 7, 8, 9), for which the intermolecular pair potential is a
function of the interparticle separation. The agreement is good. At high temper-
ature (T ≥ 500 (K)), where the repulsive part of the interaction dominates, the
virial coefficients B2(T ) is positive. However, at low temperatures (T ≤ 500 (K)),
where the attractive part of the interaction dominates, the virial coefficient is neg-
ative. The temperature at which B2(T ) → 0 is called the Boyle’s temperature TB

[6] for the Lennard-Jines (12-6) potential. For the second virial coefficient of He, we
obtain the Boyle’s temperature as follow: TB = 34.9312438964844 (K) B2(T ) =
9.82958 × 10−6 (cm3/mol). For the second virial coefficient of Ne, we get TB =
121.67828369140625 (K) B2(T ) = 8.31197 × 10−6 (cm3/mol). For the sec-
ond virial coefficient of Ar, we obtain the Boyle’s temperature as follow: TB =
410.1513671875 (K) B2(T ) = 8.85635 × 10−7 (cm3/mol). For the second viri-
al coefficient of Kr, we have TB = 584.465698242188 (K) B2(T ) = 1.20463 ×
10−6 (cm3/mol). For the second virial coefficient of Xe, we obtain the Boyle’s temper-
ature as follow: TB = 751.944213867188 (K) B2(T ) = 5.32385 × 10−6 (cm3/mol).
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For the second virial coefficient of N2, we obtain the Boyle’s temperature as fol-
low: TB = 326.34381103515625 (K) B2(T ) = 7.75205 × 10−6 (cm3/mol). For
the second virial coefficient of CF4, we obtain the Boyle’s temperature as fol-
low: TB = 517.474334716796875 (K) B2(T ) = 8.99378 × 10−6 (cm3/mol). For
the second virial coefficient of CH4, we obtain the Boyle’s temperature as follow:
TB = 507.2205796875 (K) B2(T ) = 7.45381 × 10−6 (cm3/mol). From Tables 3, 9,
the second virial coefficients of the experimental a little is different from the calcula-
tion for He, Ne, Ar, Kr, N2, CF4. The second virial coefficients of the experimental is
different from the calculation for Xe, CH4. From Eq. 1, if the higher temperature (T )

but very low density
( N

V

)2
, this the third virial coefficients(B3(T )) must be minimal.

He, Ne, CF4 have the third virial coefficients values not corresponded to Eq. 1, at
the very higher temperature (see Table 10). Ar, Kr, N2, He, Xe, CH4 have the third
virial coefficients values corresponded to Eq. 1, at the very higher temperature (see
Table 10).
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